Presentation Do's

- Mute your mic during the presentation
- You can participate in writing or verbally using the chat window
 - In writing: your question will be read
 - Verbally: type "Raise hand" and slide #, share with "Everyone"; please wait to be called on to ask your question
- Be considerate of others waiting to participate
- We will try to get to all questions

2021 IRP Webinar #4: Demand Side Resources

July 14, 2020

Agenda

- Safety moment
- Speaker Introductions and Preliminaries
- Overview of CPA in IRP
 - CPA methodology
- Electric Potential

۰

•

.

- Energy Efficiency
- Demand Response
- Distributed Solar pV
- Combined Heat and Power
- Natural Gas Potential
- Distribution Efficiency Potential
- CPA input to IRP modeling
- Feedback and Final Q&A
- Next steps
 - Appendix

Safety Moment

SOURCE: https://www.mayoclinic.org/healthy-lifestyle/adult-health/multimedia/back-pain/sls-20076866?s=2

Start in a safe position

Maintain the natural curve in your lower back

Use your legs

Squatting instead of kneeling

Let your legs do the work

Avoid twisting

Gurvinder Singh Senior Resource Planning Analyst, PSE

Lakin Garth Senior Associate, Cadmus

Alexandra Streamer & Alison Peters Co-facilitators, EnviroIssues

Welcome to the webinar and thank you for participating!

	יא GoTo Meeting ◄ איג X	
🛞 GoTo Meeting	Discover the New GoToMeeting × It's faster, simpler & more reliable than ever See what's new	
	Talking:	
	Audio ← Screen ► Webcam ►	
	?	Virtual webinar link: https://global.gotomeeting.com/ioin/356063605
	Computer audio	
	Phone call No audio	Access Code: 356-063-605
	Miscophone Array (2. Poplitak Audio)	
	Microphone Array (2- Neater Addio)	Call-in telephone number: <u>+1 (646) 749-3112</u>
	Troubleshooting Sound Check	
	> Audience view	
	> Attendees: 1 of 26 (max)	
	• Chat	
	Entor your moregan	
	enter your message	PSE SOUND
	To: Everyone V Send	ENERGY
	h 🖻 🕭 🛞 i 📺 …	This session is being recorded by Puget Sound Energy.
	Record O	Third-party recording is not permitted.

Presentation Do's

- Mute your mic during the presentation
- You can participate in writing or verbally using the chat window
 - In writing: your question will be read
 - Verbally: type "Raise hand" and slide #, share with "Everyone"; please wait to be called on to ask your question
- Be considerate of others waiting to participate
- We will try to get to all questions

Participation Objectives

- Stakeholders share input on conservation potential assessment
- Stakeholders share input on sensitivities with demand side resources

Overview of the Conservation Potential Assessment in the IRP

- The CPA is used in the IRP to determine the cost effective amount of demand side resources (energy efficiency, distribution efficiency, combined heat, demand response)
 - Cost effective conservation is used to inform the program target setting process:
 - For energy efficiency based on EIA/HB1257
 - For Demand Response per CETA
- CPA and cost-effective conservation will be used to inform the
 - Clean Energy Action Plan
 - Clean Energy Implementation Plan
- The CPA will also provide conservation forecast at the zip code level to be used by Delivery System Planning in their distributed energy resource planning process, also known as the non-wires alternative solutions
- Sensitivities can be used to test various assumptions and their impact on the output in the IRP

Electric and Gas IRP Models

Assumptions

Š

Inputs

11

Party Recording is Not Permitted.

Consultations along the way

• Updated T&D capital deferral benefit:

PSE deferral costs		\$/kW-yr	\$/k	W-yr 2020\$
Transmission	\$	5.22	\$	5.22
Distribution	\$	7.40	\$	7.40
T&D Deferral Costs	\$	12.61	\$	12.61
Power Council deferral costs 2021 Plan	\$/k	W-yr 2016\$	\$/k	W-yr 2020\$
Transmission	\$	3.08	\$	3.35
Distribution	\$	6.85	\$	7.45
T&D Deferral Costs	\$	9.93	\$	10.79
Power Council deferral costs 7th Plan	\$/k	W-yr 2012\$	\$/k	W-yr 2020\$
Transmission	\$	26.00	\$	29.55
Distribution	\$	31.00	\$	35.23
T&D Deferral Costs	\$	57.00	\$	64.77

• We will also be updating the gas distribution deferral benefit

Energy Independence Act Statute RCW 19.285.040

...using methodologies consistent with those used by the Pacific Northwest electric power and conservation planning council in the most recently published regional power plan...

...Nothing in the rule adopted under this subsection precludes a qualifying utility from using its utility specific conservation measures, values, and assumptions in identifying its achievable cost-effective conservation potential.

CADMUS

DSR Potential Study Draft Results

Cadmus

Our team has performed 40+ demand-side resource potential studies in the last ten years

Range of Clients	 Investor-owned utilities Public power utilities Public utility commissions Federal and state agencies
Client Needs	 Integrated Resource Planning support Program planning Target setting and regulatory compliance
Demand-Side Management Resources	 Energy efficiency Demand response Customer-sited distributed energy resources Electric utility infrastructure

Energy Efficiency

Methodology

Study Overview

Primary Objectives

- Produce updated forecasts of achievable technical potential
- Electric: 2022 2045
- Gas: 2022 2041
- Develop supply curve inputs
- Align savings and costs

Updated Data

- Load and customer forecasts
- Updated commercial square footage data
- PSE measure case and Regional Technical Forum unit-energy savings updates
- 2018 & 2019 PSE program accomplishments
- 2019 Legislation updates
- Council 2021 Plan updates

Scope of the Analysis

Five Sources	 Energy Efficiency Demand Response Distributed Solar Photovoltaics Combined Heat and Power Distribution Efficiency 	
Two Fuels	 Electric. Energy efficiency, Distributed Solar PV, Demand Response, Combined Heat and Power, and Distribution Efficiency Natural Gas Energy Efficiency 	
Potential Types	 Technical Potential: All technically feasible potential Achievable Potential: The subset of technical potential that homes and business will realistically adopt Economic Potential: The cost-effective portion of achievable potential selected by PSE's Integrated Resource Plan 	
Comprehensive	 Over 300 unique electric and natural gas energy efficiency measures considered. Thousands of permutations Five Combined Heat and Power technologies and up to six capacity bins for each technology Sixteen demand response products 	CADMUS

Types of Energy Efficiency Potential

odeling	Not Technically Feasible	Technical Potential		
CPA Mo	Not Technically Feasible	Market Barriers	Acl	hievable Technical Potential
IRP	Not Technically Feasible	Market Barriers	Not Cost Effective	Achievable Economic Potential

Methodology

Steps for estimating conservation potential

Step 1. Compile Measure Data

Steps for estimating conservation potential

Determine unique measures: Includes measures from the following:

- PSE Measure Cases
- Regional Technical Forum unit energy savings
- Council Plans
- Cadmus supplemental measures

2

Compile measure data and determine PSEspecific inputs:

- Costs
- Applicability
- Per-unit savings
- Measure lives
- Saturations; number of units

Step 2. Develop Units Forecasts

Steps for estimating conservation potential

	PSE customer and load forecast
Data Sources	PSE Residential Characteristics Study
	PSE Non-residential customer database
	PSE supplemental customer data files (e.g. indoor ag)
	Regional stock assessment data (Northwest Energy Efficiency)
	Alliance's Commercial Building Stock Assessment and Residential
	Building Stock Assessment)
	 Council's Power Plans
	U.S. Census Bureau American Community Survey

Step 3. Calculate Levelized Costs

Steps for estimating conservation potential

- Compiled PSE financial assumptions
 - discount rates, line losses, etc.
- Levelized costs calculated using the costs and benefits below:

Costs Included	Benefits Netted Out
Capital and Labor	Deferred Transmission & Distribution Expansion
Annual Operations and Maintenance	Regional Act Credit
Program Administration	Avoided Periodic Replacement
Periodic Replacement	Other Fuel Benefits
Other Fuel Costs	Non-Energy Impacts
Non-Energy Impacts	

Step 4. Estimate Technical Potential

Steps for estimating conservation potential

Unit energy savings derived from:

- PSE measure cases,
- Regional Technical Forum unit-energy savings workbooks,
- Council Plan, and
- Cadmus supplemental measures (e.g. commercial cooling)
- For a number of measures, Cadmus will change inputs into some RTF and 7th / 2021 Plan measures with PSE-specific values
- For example, the number of bathrooms per home or occupants per household for measures including showerheads, clothes washers, etc.

Step 5. Estimate Achievable Technical Potential

Steps for estimating conservation potential

Maximum Achievability Factor	 Previous potential assessments: 85% 2021 update: vary by measure, Council 2021 Plan as a start
Ramp Rate Percent	 10-year flat ramp for discretionary measures Adapted Council 2021 Plan ramp rates for lost opportunity measures

Step 6. Develop Supply Curves for IRP Modeling

Steps for estimating conservation potential

For each fuel type, the supply curve graph shows the relationship of:

- cumulative achievable technical potential, and
- levelized cost

Cost are levelized over the study time frame, accounting for "end effects"

Potential is then "bundled" or "binned" by levelized cost ranges

For the 2021 CPA update, we will create additional bins, particularly at higher levelized cost ranges

 This is because, when accounting for the Social Cost of Carbon, we expect the value of energy efficiency to increase

Finally, we disaggregate annual potential into hourly estimates (for electric) and monthly (for gas) using end-use load shapes

2019 Legislative Updates

Considerations in 2021 CPA

HB1444	 16 new appliance and equipment standards Includes first-in-nation water heat standard Enables low cost deployment of demand response communications All energy efficiency baselines reviewed and updated where necessary (e.g. showerheads) to meet HB1444 standards
HB1257	 State energy performance standard for commercial buildings Compliance with energy use index energy use intensity (EUI) targets or develop and implement energy efficiency measures Performance-based incentive program in 2021 and mandatory requirement beginning in 2026 Will spur efficiency improvement adoptions Reflected in more aggressive ramp rates for lost opportunity measures Retrofit measures all ramped in the first 10 years

Electric Energy Efficiency Results

Electric Energy Efficiency Potential

Achievable Technical Potential

Sector	2023	2031	2041	2045
(Cumulative Achieva	able Technical Pote	ential (aMW)	
Residential	24	169	314	339
Commercial	24	153	228	250
Industrial	2	9	10	10
Total	51	331	552	600
Percent of Baseline Sales				
Residential	1.8%	11.2%	18.0%	18.5%
Commercial	2.4%	13.6%	18.0%	18.8%
Industrial	1.4%	7.5%	8.3%	8.4%
Total	2.1%	12.3%	18.1%	18.3%

Comparison to 2019 CPA

Electric Achievable Technical Potential

	20-Year Ac	Total Achievable		
Electric	Residential	Commercial	Industrial	Potential (aMW)
Energy Efficiency P	otential			
2021 IRP	18%	18%	8%	552
2019 IRP	21%	16%	26%	692

The 2021 IRP electric study period spans 24 years;

this table shows only the first 20 years for comparison purposes

Comparison to the 2019 CPA

2021 CPA Supply Curve

2019 CPA Supply Curve

Comparison to the 2019 CPA

Electric Achievable Technical Potential

RESIDENTIAL	 Similar total potential Estimated low income customer potential Modeled new construction potential from whole home perspective Slightly higher electric residential customer forecast
COMMERCIAL	 No enterprise data center potential Lower interior lighting potential Lower indoor agricultural potential Lower electric commercial customer forecast
INDUSTRIAL	 Re-classification of some customer loads to commercial

Commercial Electric Potential

Electric Energy Efficiency Forecast

Discretionary measures receive a flat 10-year ramp rate

35

- Lost opportunity measures (new construction and natural replacement) receive 2021 Plan ramp rates
- Cadmus adjusted some ramp rates to match program activity and expectations

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

CADMUS

Top Residential Measures

Electric Energy Efficiency Potential

Measure Category	Weighted Average Levelized Cost (\$/kWh)	Cumulative 10-Year Achievable Technical Potential	Cumulative 24-Year Achievable Technical Potential
Ductless Heat Pump	\$0.270	16.3	58.0
Whole Home	-\$0.044	5.2	57.7
Heat Pump Water Heater	\$0.087	11.2	34.5
Window	\$0.400	26.3	26.3
Clothes Dryer	\$0.275	8.2	17.0
Home Energy Report	\$0.003	16.6	16.6
Heat Pump	\$0.152	4.9	17.7
Clothes Washer	-\$0.064	5.9	14.2
Refrigerator	\$0.147	5.1	12.7
Thermostat	\$0.056	9.5	9.5
Solar Water Heater	\$1.000	3.9	3.9
Ground Source Heat Pump	\$0.100	0.7	8.1
Duct Sealing and Insulation	\$0.077	5.4	5.4
Wall Insulation	\$0.061	7.2	7.2
Duct Sealing	\$0.063	4.9	4.9

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

- Levelized costs in this table are savingsweighted across individual measures and their applications (e.g. single family, low income, etc.).
- Some levelized costs may be negative due to nonenergy impacts, periodic replacement benefits, the Council credit, and deferred transmission and distribution benefits.
- Retrofit measure savings are captured in the first 10 years and therefore have the same values in the 10and 24-year columns.

CADMUS
Top Commercial Measures

Electric Energy Efficiency Potential

Measure Category	Weighted Average Levelized Cost (\$/kWh)	Cumulative 10-Year Achievable Technical Potential	Cumulative 24-Year Achievable Technical Potential
LED Panel	\$0.141	27.5	44.8
Variable Speed Efficient Motor	\$0.066	11.6	40.4
Linear LED	\$0.121	7.7	18.4
Variable Refrigerant Flow	\$0.064	4.4	10.6
Wastewater	\$0.059	9.6	9.6
High Bay LED Panel	\$0.145	5.2	8.1
Circulator Pump (Bronze or Stainless Learning Run Hours)	-\$0.147	7.1	7.1
Refrigeration Electrically-Commutated Motors	\$0.050	6.7	6.7
Commercial Strategic Energy Management	\$0.004	4.2	4.9
Pool Pump	\$0.007	1.3	4.6
Parking Garage Lighting	-\$0.014	4.5	4.5
LED Sign	\$0.063	4.5	4.5
Residential-type Heat Pump Water Heater	\$0.073	1.0	4.3
LED Other	-\$0.135	4.2	4.2
Cooling DX 65 to 135 kBtuh Premium	\$0.238	0.9	4.1

- Individual measure applications are grouped into categories in this table
- The top 15 measure categories account for about 71% of the total commercial electric achievable technical potential
- Retrofit measure savings are captured in the first 10 years and therefore have the same values in the 10and 24-year columns.

Top Industrial Electric Measures

Electric Energy Efficiency Potential

Measure Category	Weighted Average Levelized Cost (\$/kWh)	Cumulative 10- Year Achievable Technical Potential	Cumulative 24-Year Achievable Technical Potential
Plant Energy Management	\$0.034	1.1	1.1
LED Streetlight - MH 400W – NR	-\$0.022	0.7	0.9
Energy Project Management	\$0.055	0.7	0.7
Fan System Optimization	\$0.016	0.6	0.6
Integrated Plant Energy Management	-\$0.004	0.6	0.6
Fan Equipment Upgrade	\$0.049	0.6	0.6
Pump System Optimization	-\$0.032	0.5	0.5
Pump Equipment Upgrade	\$0.057	0.5	0.5
LED Streetlight - HPS 250W – NR	-\$0.048	0.3	0.4
LED Streetlight - HPS 100W – NR	-\$0.109	0.3	0.4
Wood: Replace Pneumatic Conveyor	-\$0.079	0.3	0.3
Clean Room: Change Filter Strategy	-\$0.002	0.3	0.3
Material Handling Variable Frequency Drive	\$0.056	0.3	0.3
LED Streetlight - MH 200W - NR	-\$0.077	0.2	0.2

 Individual measure applications are grouped into categories in this table

38

- The 15 measure categories account for about 75% of the total industrial electric achievable technical potential
- Retrofit measure savings are captured in the first 10 years and therefore have the same values in the 10- and 24-year columns.

Electric Codes and Standards Savings

Electric Energy Efficiency Potential

 Estimated the impact of the Washington State Energy Code (WSEC) and federal and state equipment standards

39

 WSEC accounts for 51% of codes and standards savings (82 aMW by 2045)

CADMUS

Demand Response Potential

CADMUS

Demand Response Products

Direct Load Control (DLC)	 Space Heat. (smart thermostat or switch) Water Heat. (switch or grid-enabled water heater) Electric Vehicle Supply Equipment. Residential at-home charging 	
Critical Peak Pricing (CPP)	 Customers are sent a utility price signal prior to a peak event With or without a smart thermostat 	
Commercial and Industrial Curtailment	 Manual: customers manually reduce energy usage during peak events Automated: technology and controls are programmed to reduce usage during peak events 	
Behavioral Demand Response	 Similar to home energy reports offered by efficiency programs Participants receive prior notification, usually day-ahead, via text or email notifying them of a peak event 	1115

Demand Response Product Matrix 43

Demand Response Product	Demand Response Product Group	Number of Events and Hours Curtailed	Notification Type (e.g. day-ahead, hour-ahead, etc.)
Res CPP-No Enablement	Residential Critical Peak Pricing	Up to ten 4-hour events	Day-ahead (non-dispatchable)
Res CPP-With Enablement	Residential Critical Peak Pricing	Up to ten 4-hour events	Day-ahead
Res DLC Heat-Switch	Residential DLC Space Heat	Up to ten 4-hour events	0-min
Res DLC Heat-Thermostat (BYOT)	Residential DLC Space Heat	Up to ten 4-hour events	0-min
Res DLC ERWH-Switch	Residential DLC Water Heat	Up to ten 4-hour events	0-min
Res DLC ERWH-Grid-Enabled	Residential DLC Water Heat	Unlimited	0-min
Res DLC HPWH-Switch	Residential DLC Water Heat	Up to ten 4-hour events	0-min
Res DLC HPWH-Grid-Enabled	Residential DLC Water Heat	Unlimited	0-min
Small Com DLC Heat-Switch	Commercial DLC Space Heat	Up to ten 4-hour events	0-min
Medium Com DLC Heat-Switch	Commercial DLC Space Heat	Up to ten 4-hour events	0-min
C&I Curtailment-Manual	Commercial and Industrial Curtailment	Up to ten 4-hour events	Day-ahead (or as late as 2-hour-ahead)
C&I Curtailment-AutoDR	Commercial and Industrial Curtailment	Up to ten 4-hour events	0-min
C&I CPP-No Enablement	Commercial Critical Peak Pricing	Up to ten 4-hour events	Day-ahead (non-dispatchable)
C&I CPP-With Enablement	Commercial Critical Peak Pricing	Up to ten 4-hour events	Day-ahead
Res Electric Vehicle DLC	Residential Electric Vehicles	Up to ten 4-hour events	Day-ahead
Res Behavior DR	Residential Behavioral	Up to ten 4-hour events	Day-ahead (non-dispatchable)

Comparison to the 2019 CPA

2021 CPA Supply Curve

2019 CPA Supply Curve

44

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

CADMUS

Comparison to the 2019 CPA

Demand Response Achievable Technical Potential

RESIDENTIAL	 Added behavioral demand response Added residential Electric Vehicle Service Equipment DLC Applied grid-enabled and switch water heat DLC to both electric resistance and heat pump water heaters Lowered space heating DLC per unit kW impacts Neither study considers smart appliance DLC due to uncertainties regarding customer acceptance
COMMERCIAL AND INDUSTRIAL	 No new products Adjusted C&I curtailment program participation rate

45

Demand Response Considerations

Three highest-saving DR products

Residential Water Heat DLC (71 MW)	 Estimated potential across four electric water heater combinations (1) electric resistance, (2) grid-enabled electric resistance, (3) heat pump, and (4) grid-enabled heat pump Methodology similar to Council's for 2021 Plan Standard units turn over to grid-enabled as measure lives expire
Residential Critical Peak Pricing (66 MW)	 With or without a smart thermostat Participation limited to 15% of customers with electric service Impacts vary by customer segment
Residential Space Heat DLC (54 MW)	 Participation limited to eligible customers with electric space heat Peak load impacts vary by control option: BYOT or switch

Demand Response Considerations

Interactions with Energy Efficiency

Assume energy efficiency takes place first

Adjusted Forecast

- Uses sales forecast net of technical achievable conservation as starting point for top-down products
- Uses technical achievable end use saturations (e.g. smart thermostat penetration rates) for bottom-up products

47

Distributed Solar PV Potential

CADMUS

Distributed Solar PV Methodology

Achievable Potential

We estimate market penetration as function of customer payback.

Customer payback is a key input to a Bass diffusion model function.

For each scenario, we calculate annualized simple payback (ASP) for each year of the study ASP for an average system in a given year is used to calculate the market penetration of solar for that year Market penetration (MP) in a given year is taken as the fraction of technical potential that can be considered achievable potential

Net Costs (after incentives)

 $ASP = \frac{1}{Annual Energy Savings + Production Based Incentives}$

$$MP = e^{(-sensitivity to payback *ASP)}$$

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

Achievable Potential Assumptions

Two Scenarios

Business as Usual

- Continuation of federal Investment Tax Credit in its current form:
 - 0% in 2022 for residential
 - 10% for commercial
- Washington State Renewable Energy System Incentive Program (RESIP) applications ended December 2019
- Net metering
- 5-year Modified Accelerated Cost Recovery System (MACRS) depreciation for commercial

Utility Incentive

- Business as usual, plus
- Utility incentive equal to \$0.048/kWh
- Calculated from the 2019 Integrated Resource Plan as a levelized value of the 2022-2045 electric avoided costs
- Factoring in a 5% assumption for admin costs

Red line represents PSE program team trend line projection ~ 300MW The inherent disconnect is that there are no incentives currently available in business as usual

Distributed Solar PV Cost Forecast

Reviewed actual and forecasted costs from Lazard, Wood Mackenzie, EnergySage and National Renewable Energy Laboratory

52

Residential costs varied between:

- Lazard (\$2.88/watt)
- Wood Mackenzie (\$2.84/w)
- EnergySage (\$2.78/w).
- Used EnergySage costs and applied NREL cost forecasts.

Commercial costs varied between:

- Lazard (\$2.35/w)
- Wood Mackenzie (\$1.39/w)
- Used Wood Mac costs and cost forecasts from NREL.

CADMUS

Distributed Solar PV Payback

Third-party recording is not permitted.

CADMUS

53

Combined Heat and Power Potential

Methodology

Combined Heat and Power

Technical Potential

- Non-renewable technologies:
 - Reciprocating engines
 - Microturbines
 - Gas turbines
- Renewable technologies:
 - Industrial biomass
 - Biogas
- Applicability
 - PSE electric customers with any gas service
 - C&I facilities with average monthly demand >= 30kW
 - Assume warehouses with high load are refrigerated – CHP ineligible

Achievable Potential

- ACEEE Study & CHP Install Database
- CHP Favorable States
 - CA: 0.66% per year
 - CT: 0.25% per year
 - MA: 0.27% per year
- Washington (non-favorable):
 - 0.13% per year
- Our Assumption
 - PSE Territory: 0.20% per year
- Higher than calculated value (0.13%) from ACEEE and CHP Install Database due to utility incentives

Achievable Potential Results

Combined Heat and Power

2045 Cumulative Achievable Potential (aMW) at Generator

Technology	2045			
Nonrenewable - Natural Gas (Total)				
30–99 kW	1.04			
100–199 kW	0.83			
200–499 kW	1.10			
500–999 kW	0.76			
1–4.9 MW	1.41			
5.0 MW+	0.96			
Renewable - Biomass (Total)				
< 500 kW	0.00			
500-999 kW	0.00			
1–4.9 MW	0.01			
5.0 MW+	0.35			
Renewable - Biogas (Total)				
Landfill	0.21			
Farm	0.85			
Paper Mfg	0.03			
Wastewater	0.26			
Total CHP	7.82			

2045 Cumulative System Installations

Technology	2045
Nonrenewable - Natural Gas (Total)	45
Reciprocating Engine	25
Gas Turbine	18
Microturbine	2
Renewables	2
Total CHP	47

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

Natural Gas Energy Efficiency Potential Results

Natural Gas Energy Efficiency Potential

Achievable Technical Potential

Sector	2023	2031	2041		
Cumulative Achievable Potential (MMTherms)					
Residential	15.5	91.5	147.1		
Commercial	3.0	18.2	25.0		
Industrial	0.3	1.7	1.7		
Total	18.9	111.4	173.8		
	Percent of Basel	ine Sales			
Residential	2.4%	13.3%	19.4%		
Commercial	1.0%	5.4%	6.9%		
Industrial	1.4%	7.0%	7.6%		
Total	2.0%	10.8%	15.5%		

58

Comparison to 2019 CPA

Natural Gas Achievable Technical Potential

	20-Year Achievable Technical Potential (% of Sales)			Total Achievable	
	Residential	Commercial	Industrial	Technical Potential (MMTherms)	
Energy Efficiency Potential					
2021 IRP	19%	7%	8%	174	
2019 IRP	20%	8%	17%	178	

59

Comparison to the 2019 CPA 60 2021 CPA Supply Curve 2019 CPA Supply Curve

Levelized Cost Bundle (\$/Therm)

Residential Commercial Industrial

This session is being recorded by Puget Sound Energy.

Third-party recording is not permitted.

CADMUS

Commercial

Industrial

Residential

Top Residential Gas Measures

Natural Gas Energy Efficiency Potential

Measure Name	Weighted Average Levelized Cost (\$/Therm)	Cumulative 10-Year Achievable Technical Potential (MM Therms)	Cumulative 20-Year Achievable Technical Potential (MM Therms)
Furnace	\$0.822	12.8	32.1
Whole Home	\$0.354	3.3	25.7
Water Heater	\$1.612	5.1	16.3
Thermostat	\$0.823	11.2	11.2
Window	\$19.353	10.5	10.5
Wall Insulation	\$1.491	7.3	7.3
Duct Sealing and Insulation	\$1.358	7.1	7.1
Duct Sealing	\$1.219	5.4	5.4
Home Energy Report	\$0.226	5.2	5.2
Thermostatic Restrictor Valve	-\$2.087	3.1	3.1
Whole House Sealing	\$4.615	3.0	3.0
Floor Insulation	\$3.332	2.6	2.6
Showerhead	-\$0.797	2.4	2.4
Aerators	-\$2.791	2.3	2.3
Solar Water Heater	\$22.668	2.3	2.3

- Individual measure applications are grouped into categories in this table
- The top 15 measure categories account for about 93% of the total residential achievable technical potential
- Retrofit measure savings are captured in the first 10 years and therefore have the same values in the 10- and 20-year columns.

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

Top Commercial Gas Measures

Natural Gas Energy Efficiency Potential

Measure Name	Weighted Average Levelized Cost (\$Therm)	Cumulative 10-Year Achievable Technical Potential (MM Therm)	Cumulative 20-Year Achievable Technical Potential (MM Therm)
Gas Rooftop Unit Supply Fan Variable Frequency Drive and Controller	\$0.457	3.0	3.0
Furnace (< 225 kBtuh High AFUE 92%)	\$0.231	1.0	1.8
Furnace (< 225 kBtuh Premium AFUE 94%)	\$0.356	0.8	1.9
Ozone Laundry	\$0.260	1.5	1.5
Pool Heat Recovery	\$0.107	1.0	1.0
Direct Digital Controls Energy Management	-\$11.032	1.5	1.7
Commissioning Retro	\$7.239	1.5	1.5
Boiler (300 to 2500 kBtuh AFUE 95%)	\$1.048	0.4	1.1
Clothes Washer	-\$16.976	0.5	0.9
Boiler (300 to 2500 kBtuh AFUE 85%)	\$0.480	0.3	0.8
Demand Controlled Ventilation Kitchen	\$0.881	0.6	0.6
Oven Double Rack	\$0.202	0.2	0.6
Gas Water Heater 94% Efficient	\$0.663	0.2	0.5
Boiler 300 to 2500 kBtuh AFUE 79%	\$0.950	0.2	0.6
Convection Oven	\$0.044	0.2	0.5

This session is being recorded by Puget Sound Energy.

Third-party recording is not permitted.

- Individual measure applications are grouped into categories in this table
- The top 15 measure categories account for about 72% of the total commercial gas achievable technical potential
- Retrofit measure savings are captured in the first 10 years and therefore have the same values in the 10- and 20-year columns.

Top Industrial Measures

Industrial Natural Gas Energy Efficiency

Weighted Average Levelized Cost (\$/Therm)	Cumulative 10-Year Achievable Technical Potential (Therm)	Cumulative 20-Year Achievable Technical Potential (Therm)
\$0.017	196,537	196,537
\$0.014	174,386	174,386
-\$0.027	138,408	138,408
\$0.070	114,484	114,484
-\$0.017	110,464	110,464
\$0.343	93,553	93,553
\$0.015	86,669	86,669
\$0.018	75,334	75,334
\$0.081	71,916	71,916
-\$0.054	71,900	71,900
-\$0.015	64,671	64,671
\$0.289	62,980	62,980
\$0.018	59,471	59,471
-\$0.016	58,755	58,755
-\$0.007	53,159	53,159
	Weighted Average Levelized Cost (\$/Therm) \$0.017 \$0.014 -\$0.027 \$0.070 \$0.070 \$0.017 \$0.018 \$0.015 \$0.018 \$0.015 \$0.015	Weighted Average Levelized Cost (\$/Therm)Cumulative 10-Year Achievable Technical Potential (Therm)\$0.017Potential (Therm)\$0.017196,537\$0.014174,386-\$0.027138,408\$0.070114,484-\$0.017110,464\$0.34393,553\$0.01586,669\$0.01875,334\$0.05471,916-\$0.05471,900-\$0.01564,671\$0.28962,980\$0.01859,471-\$0.01658,755-\$0.00753,159

This session is being recorded by Puget Sound Energy.

Third-party recording is not permitted.

- Individual measure applications are grouped into categories in this table
- The top 15 measure categories account for about 72% of the total industrial gas achievable technical potential
- Retrofit measure savings are captured in the first 10 years and therefore have the same values in the 10- and 20-year columns.

CADMUS

Natural Gas Codes and Standards Savings 64

Natural Gas Energy Efficiency Potential

Distribution Efficiency

- Alignment with Automated Metering Infrastructure (AMI) and Advanced Distribution Management Systems (ADMS) business cases
- Schedule feasibility and infrastructure requirements when implementing Volt-VAR Optimization (VVO)

By the numbers:

- 153 Substations total
- 17 complete by end of 2020
- Remaining 136 2019 IRP study period
- 2022 onwards incorporate controls to maintain stability in system
 - Shift from Line Drop Compensation (LDC) to Volt-VAR Optimization (VVO)

CPA input to the IRP analysis

- End use load shapes applied to measure level and measures and sectors are aggregated into levelized price points on the conservation supply curve:
 - Energy efficiency (programmatic and codes & standards), combined heat and power, and distribution efficiency are hourly inputs
 - Conservation bundles are 20 year vector (24 year electric), available in year one of study
- Distributed solar pV hourly input, market bundle, no cost in IRP
- Similarly, gas conservation supply curve is input on a monthly basis by sector.
- The benefit of SCGHG to DSR is applied in the portfolio models

Additional Data:

 The CPA will also create disaggregated gas and electric bundles by zip code to inform Delivery System Planning

Demand Response in the 2021 IRP

Load flexibility value

Avoided generation costs are the largest source of load flexibility value under national average conditions. There is significant regional variation in this finding.

Demand response is a capacity resource:

- Each program group's ELCC is determined in resource adequacy model: nameplate capacity is converted to peak contribution values → decrement to capacity in the portfolio model
- Demand response programs are also input thru the flexibility model to obtain their flexibility benefits value → added to the value of DR in the portfolio model
- Portfolio model can optimize by program capacity and timing of the program start year

Stakeholder Feedback on DSR Sensitivities

- The purpose of the sensitivity is to test different resources in PSE's portfolio.
- We have done sensitivities in the past IRPs:
 - Alternate discount rate
 - Extended DSR

We are asking for **stakeholder input on** what **DSR sensitivities** to consider for the 2021 IRP. We already have a couple to start.

Proposed sensitivities:

- 1. Distributed Solar pV with PSE incentive
- 2. Distributed Solar pV with PSE ownership.
- 3. More??

Questions & Answers

Feedback Form

https://pse-irp.participate.online/get-involved/planning-assumptions-resource-alternatives			○ No						
			Please keep my comments anonymous						
				Select Language V Powered by Select Transition		First Name*		Last Name*	
	PUGET -					First Name		Last Name	
PSE SOUND Resource planning					Organization				
	Home 2021 IBP Get In	woked Consultation Hodates	Past IPPa Sign I In O			Organization			
						Email Address*		Phone Number	
	Establish Resource	Planning Assumptions	Analyza Alternatives &			Email		Phone	
	Needs	& Resource Alternatives	Portfolios			Address		City	
						Address		City	
	Analyze Results	Develop Resource Plan	Clean Energy Action Plan			State		Zip Code	
						Select a State	~	ZIp Code	
	Planning Assu	umptions & Re	source	Meetings		Please select the topic you would lik "General" from the list."	ke to provide fe	edback on: For gene	ral comments, please select
	PSE will analyze potential futures	through scenarios and sensitivities	that will have different gas prices.	May 28, 2020: Generic +		Select a topic			~
electric prices, electric demand, environmental policies, and supply-side and demand-side resource					Respondent Comment*				
	alternatives. Sensitivities determine how different potential futures and factors affect resource strategies, costs, emissions, and risks. This IRP steps defines the inputs and assumptions to be used in the various IRP models.		June 10, 2020: Electric + Price Forecast						
	Social Cost of Carbon +			June 30, 2020: Transmission Constraints					
	Upstream Emissions		July 14, 2020: Demand						
	Generic Resource As	sumptions	+	Side Resources					
	Transmission Constraints + Natural Gas Price Forecast +		- 7/14/2020 1:30 - 4:30 PM Overview		Attach a file			/	
			 On July 14, 2020 PSE will host a series of workshops on demand side resources. At the workshops, stakeholders will share 		Choose File No file chosen				
	Electric Price Forecas	st	+	 their feedback on demand response programs and the costs and saving assumptions to be included in the 		Recommendations			
	Demand Side Resources (Conservation) +		- conservation measures Feedback forms can be used to submit						
	Demand Side Resource	ces (Demand Response)	+	your questions before the meeting and to provide feedback after the meeting.					
	Clean Energy Transfo	ormation Act	+	soon.					
	Delivery System Plan	ning	+	Consultation update coming soon	The st				/

Share your feedback with PSE

May we post these comments to the IRP webpage?

This Session is Being Recorded by Puget Sound Energy. Third-Party Recording is Not Permitted.

- An important way to share your input
- Available on the website 24/7
- Comments, questions and data can be submitted throughout the year, but timely feedback supports the technical process
- Please submit your Feedback Form <u>within a week of the</u> <u>meeting topic</u>

- Submit Feedback Form to PSE by July 21, 2020
- A recording and the chat from today's webinar will be posted to the website tomorrow
- PSE will compile all the feedback in the Feedback Report and post all the questions by **July 28, 2020**
- The Consultation Update will be shared on August 4

Details of upcoming meetings can be found at <u>pse.com/irp</u>

Date	Торіс
July 21, 1:30 – 4:30 pm	Social Cost of Carbon
August 11, 8:30 am – 12:30 pm	Portfolio sensitivities development (electric & gas) CETA assumptions Distributed energy resources
September 1, 1:00 – 5:00 pm	Demand forecast (electric & gas) Resource adequacy Resource need: peak capacity, energy & renewable energy need
October 20, 1:30 – 4:30 pm	Portfolio sensitivities draft results Flexibility analysis
November 4, 1:00 – 4:30 pm	Clean Energy Action Plan 10-year Distribution & Transmission Plan
December 9, 1:00 – 4:30 pm	Portfolio draft results Stochastic analysis Wholesale market risk

Thank you for your attention and input.

Please complete your Feedback Form by July 21, 2020

We look forward to your attendance at PSE's next public participation webinar:

Social Cost of Carbon July 21, 2020

Residential Electric Potential Summary

Residential Supply Curve

- Cumulative, 24-Year Achievable Technical Potential is 339 aMW
- Residential accounts for 57% of the total, 24-year achievable technical potential
- About 21% of residential electric potential costs less than \$28/MWh, levelized
- About 59% (199 aMW) costs less than \$1500/MWh, levelized

Residential Electric Potential Summary

Savings by End Use

Commercial Electric Potential Summary

Commercial Electric Supply Curve

 Cumulative, 24-Year Achievable Technical Potential is 250 aMW

79

- Commercial accounts for 42% of the total, 24-year achievable technical potential
- About 27% of commercial electric potential costs less than \$28/MWh, levelized
- About 91% (199 aMW) costs less than \$150/MWh, levelized

Commercial Electric Potential Summary

Savings by End Use

Industrial Electric Potential Summary

Industrial Supply Curve

- Cumulative, 24-Year Achievable Technical Potential is 10 aMW
- Industrial accounts for 2% of the total, 24year achievable technical potential
- About 86% of commercial electric potential costs less than \$28/MWh, levelized
- About 97% (199 aMW) costs less than \$150/MWh, levelized

Electric Supply Curve

Cumulative 24-Year Achievable Technical Potential by Levelized Cost Bundle

. . .

■ Residential ■ Commercial ■ Industrial

 73% of the 24-year cumulative achievable technical potential costs less than \$150/MWh, levelized

Demand Response Supply Curve

24-Year Demand Response Potential and Levelized Costs

■ Cumulative Winter Achievable Potential (MW) ■ Incremental Winter Achievable Potential (MW)

 The total, cumulative 24-year demand response achievable technical potential equals approximately 4.6% of the 2045 forecast electric system peak

 About 90% of the 24-year cumulative achievable technical potential costs less than \$100/kW-year, levelized

Overview of Results

Total 24-Year Demand Response Potential, by Year and Product Group

Natural Gas Conservation Forecast

Cumulative Achievable Technical Potential Forecast

- Discretionary measures receive a flat 10year ramp rate
- Lost opportunity measures (new construction and natural replacement) receive 2021 Plan ramp rates
- Cadmus adjusted some ramp rates to match program activity and expectations

Natural Gas Supply Curve

Cumulative 20-Year Achievable Technical Potential by Levelized Cost Bundle

 About 23% of the 20-year cumulative achievable technical potential costs less than \$0.22/therm, levelized

 About 47% of the 20-year cumulative achievable technical potential costs less than \$0.70/therm, levelized

Residential Gas Potential Summary

Residential Gas Supply Curve

 Cumulative, 20-Year achievable technical potential is 147 million therms

87

- Residential accounts for 85% of the total, 20-year achievable technical potential
- About 18% of residential gas potential costs less than \$0.22/therm, levelized
- About 41% (61 MM therms) costs less than \$0.70/therm, levelized

Residential Gas Potential Summary

Natural Gas Energy Efficiency Potential – by End Use

Commercial Gas Potential Summary

Commercial Gas Supply Curve

- Cumulative, 20-Year achievable technical potential is 25 million therms
- Commercial accounts for 14% of the total, 20-year achievable technical potential
- About 47% (12 MM therms) of commercial gas potential costs less than \$0.22/therm, levelized
- About 79% (20 MM therms) costs less than \$0.70/therm, levelized

Commercial Gas Potential Summary

Natural Gas Energy Efficiency Potential – by End Use

Industrial Gas Potential Summary

Industrial Gas Supply Curve

 Cumulative, 20-Year achievable technical potential is about 1.7 million therms

- Industrial accounts for 1% of the total, 20year gas achievable technical potential
- About 89% (1.5 MM therms) of commercial gas potential costs less than \$0.22/therm, levelized

Achievable Potential Results

2045 Achievable Potential - Capacity

Achievable Potential Results

Supply Curve

93

Solar PV Key Data Inputs

Technical Potential

Total Available Roof Area	 Building square footage (RBSA & CBSA) Number of floors Customer counts
Adjusted Available Roof Area	 Adjustment factor from LIDAR or other data source Accounts for orientation, shading, and obstructions International Fire Code Article 605.11.3
Module Power Density	 Derived from regional datasets Forecast future model power density from International Technology Roadmap for Photovoltaic
Electricity Generation	Capacity factor valuePSE-specific data
Annual Production Degradation	 Applied annually 2012 NREL study

Solar PV Key Data Inputs

Achievable Potential

Electric Retail Rates	 PSE electric res and com general service rates Rate escalation factors calculated from historical NREL data Customer counts
Solar System Costs	 Regional installation data Other sources include Wood Mackenzie and EnergySage Future cost estimates based on data collected from NREL
Average System Capacity	Derived from PSE-specific data
Achievable Potential Scenarios	 Business as usual Utility incentive scenario
Cash Flow Calculation	 Projected retail rates, system install costs, and federal and state incentives Derive a simple payback period for both res and com for each year

Solar PV Technical Potential

Residential and Commercial Sectors

Achievable Potential Assumptions

Two Scenarios

Business as Usual

- Continuation of federal ITC in its current form:
 - 0% in 2022 for residential
 - 10% for commercial
- WA RESIP applications ended December 2019
- Net metering
- 5-year MACRS depreciation for commercial

Utility Incentive

- Business as usual, plus
- Utility incentive equal to \$0.048/kWh
- Calculated from the 2019 IRP as a levelized value of the 2022-2045 electric avoided costs
- Factoring in a 5% assumption for admin costs

97

CADMUS

Solar PV Achievable Potential

98